

Arkansas Plant Health Clinic Newsletter

Follow us on social media

Wheat

Several bacterial diseases affect wheat that are easily confused without serological testing. Basal Glume Rot, caused by Pseudomonas syringae pv. syringae, and Black Chaff, caused by Xanthomonas campestris py. undulosa, are both seed-borne disease of wheat with similar symptoms. The diagnostic symptom for Basal Glume Rot is a dull brown to black discoloration on the lower part of the glume. When disease is severe, the entire glume may be discolored. Grain heads may shrivel and die if the peduncle is girdled by the bacterium. Lesions, 2-10 mm long, begin on the leaves as small, watersoaked, dark-green spots that quickly become brown and necrotic. Black Chaff and bacterial streak are two phases of the same disease. Generally, symptoms become evident after heading when many water-soaked, elongated, light-brown lesions appear between the veins on upper leaves. When field conditions are wet, bacterial ooze may be observed. Head symptoms are black longitudinal stripes on the glumes and purplish-black lesions on the peduncle and rachis. There is no control for either bacterial disease other than using clean seed.

Wheat Basal Glume Rot-Pseudomonas syringae pv. syringae

Photo by Raven Bough, University of Arkansas Cooperative Extension

Cherry

Cherry Leaf Spot caused by, Blumeriella jaapii, anamorph Phloeosporella padi, is the most import fungal disease of cherry wherever cherries are grown. Plums are susceptible as Symptoms begin as small reddish to well. purple circular spots on the leaves. On the underside of the leaves, extruded masses of white to pink spores are produced during wet conditions. The leaves take on a mottled appearance as the tissue becomes yellow, leaving the area around the lesions green. On plums, the necrotic lesions may drop out, giving a shot hole appearance. The infected leaves fall prematurely, reducing fruit yields and weakening the tree. In severe cases, complete defoliation may occur. Early defoliation may reduce bud survival and fruit set for at least two seasons. The fungus overwinters in leaves fallen on the ground which were infected the Therefore, sanitation is previous season. important in controlling Cherry Leaf Spot.

Clean up all fallen leaves. Fungicides should be applied at petal fall and at 7–10-day intervals to harvest. Commercial growers may use a copper fungicide, or Syllit, or Gem, or Pristine. Homeowners may use Captan, or a copper fungicide. Ornamentals may be treated with chlorothalonil.

Cherry Leaf Spot-Blumeriella jaapii, anamorph Phloeosporella padi

Photos by Sherrie Smith, University of Arkansas Cooperative Extension

Cherry Leaf Spot spores-Blumeriella jaapii, anamorph Phloeosporella padi

Photo by Sherrie Smith, University of Arkansas Cooperative Extension

Squash

Blossom End Rot of squash is caused by a lack of calcium in the developing fruit. This may be the result of a genuine lack of calcium in the soil or because of uneven watering practices preventing the plant from taking the calcium up. Tomato, pepper, squash, and other fruiting vegetables are susceptible. Symptoms are a dark, dry rot at the blossom end of the fruit. Secondary bacteria and fungi may invade the rot causing eventual collapse of the entire fruit. Prevention starts with a soil test well in advance of the growing season. Plants should be mulched to prevent the rapid drying of the soil. Even soil moisture enables the plants to take up the calcium more easily. Fertilize properly. Excessive amounts of nitrogen or potash depress the uptake of calcium.

Squash Blossom End Rot-Abiotic

Photo by Raven Bough, University of Arkansas Cooperative Extension

Tomato Blossom End Rot-Abiotic

Photo by Sherrie Smith, University of Arkansas Cooperative Extension

Tomato

Bacterial Speck is caused by the bacterium *Pseudomonas syringae* pv. *tomato*. Symptoms on leaves are tiny, round, dark brown to black

Spots may run together under spots. environmental conditions favorable for disease development, killing large areas of tissue. stems and peduncles Lesions on are elongated. Fruit lesions are minute specks that are dark and rarely exceeding 1mm (.04inch). A dark green halo may be associated with the fruit spot. The pathogen survives in seed, crop debris, and volunteers. Control measures rotation, consist of crop using clean transplants, seed treatments, elimination of cull piles near production areas, and the timely application of bactericides when necessary. Kocide is labeled for use on tomatoes in Arkansas to protect against bacterial diseases.

Tomato Bacterial Speck-Pseudomonas syringae pv. tomato

Photo by Sherrie Smith, University of Arkansas Cooperative Extension

Tomato Bacterial Speck-Pseudomonas syringae pv. tomato

Photo by Sherrie Smith, University of Arkansas Cooperative Extension

Request for help from Dr. Robbins:

Root knot nematode populations are needed for our Arkansas species study. I am a nematologist in the department of Plant Pathology in Fayetteville. My student and I are trying to amass populations of as many species of Root knot nematode (Meloidogyne sp.) as possible for species identification using molecular techniques. At present no root knot species in Arkansas have been identified using molecular technology. We are interested in receiving populations from home gardens, shrubs, flowers, trees and grasses. For samples we need about a pint of soil and feeder roots in a sealed plastic bag that is plainly identified by plant host, location (City County, physical address, collector, and date of collection). Please send samples to us at the follow address:

Dr. Robert Robbins Cralley-Warren Research Center 2601 N. Young Ave Fayetteville, AR 72701 Phone 479-575-2555 Fax 479-575-3348 Email: <u>rrobbin@uark.edu</u>

Tomato Root Knot Nematodes-Meloidogyne sp.

Photo by Sherrie Smith, University of Arkansas Cooperative Extension

Soybean Root Knot Nematodes-

Meloidogyne sp.

Photo by Sherrie Smith, University of Arkansas Cooperative Extension

This bulletin from the Cooperative Extension Plant Health Clinic (Plant Disease Clinic) is an electronic update about diseases and other problems observed in our lab each month. Input from everybody interested in plants is welcome and appreciated.

"This work is supported by the Crop Protection and Pest Management Program [grant no. 2017-70006-27279/project accession no. 1013890] from the USDA National Institute of Food and Agriculture."