

The Marley Discovery Farm in NW Arkansas: Protecting Water Resources Through Conservation on a Poultry-Beef Grazing Farm

3D-Student Science Performance *Author: Diedre Young, Soybean Science Challenge Coordinator*

Grade: 9-12:

Integrated Chemistry, EnvironmentalScience, Physics Agricultural Science

Lesson Topics:

WaterconservationinFarming

Soil Filtration

Cycling of Matter

Water Chemistries

WatershedProtection

Performance Expectations (Standard) from State Standards or NGSS:

Chemistry:

Topic One: Matter and Chemical Reactions:

CI-ESS2-5: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids.]

CI1-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. [AR Clarification Statement: Examples of real-world problems could include wastewater treatment, production of biofuels, and the impact of heavy metals or phosphate pollutants on the environment.]

Connections to the Arkansas Disciplinary Literacy Standards:

WHST.9-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem.

Connections to the Arkansas Mathematic Standards:

HSN.Q.A.3: Choose a level of accuracy appropriate to limitations on measuring when reporting.

MP.4: Model with mathematics.

Environmental Science:

Topic One: Systems

EVS-ESS2-5: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids.]

EVS1-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. [AR Clarification Statement: Qualitative and quantitative constraints can be used to analyze a major global challenge. Examples could

include water quality with relation to biosphere, atmosphere, cryosphere and geosphere.

Topic 4: Sustainability

EVS-ESS3-2: Evaluate competing design solutions for developing, managing and utilizing energy and mineral resources based on cost-benefit ratios. [AR Clarification Statement: Emphasis is on conservation, sustainability, (e.g., recycling and reuse of resources), and minimizing impacts (e.g., Low Impact Design).]

EVS-ESS3-4: Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. [AR Clarification Statement: Examples of data on the impacts of human activities could include the sequencing of traffic lights, adding lanes to main traffic arteries, docking and dredging of waterways, transportation of goods to market, use of drones, and use of alternate energies.]

EVS-LS2-7: Design, evaluate and refine a solution for reducing the impacts of human activities on the environment and biodiversity. [AR Clarification Statement: Emphasis in this course is on Arkansas-specific solutions. Examples of human activities can include land use (agriculture, forestry, recreation, industry); sustainable and non-sustainable practices) crop rotations, eradication of invasive species); and solution resources may include Low Impact Design (LID) or bioremediation (Faulkner County, AR; Gulf of Mexico hypoxia zone.)]

EVS-LS4-6: Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. [AR Clarification Statement: Emphasis is on designing solutions for a proposed problem (e.g., micro-bead pollution, invasive species, effects of sedimentation on the Arkansas Fatmucket, White-nose Syndrome affecting bat populations, and environmental pollution from hormones and antibiotics.]

EVS4-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts. [AR Clarification Statement: Modeling complex real-world problems using computer software could include simulating future population growth in terms of limited resources or evaluating water flow though different Earth and geoengineering materials.]

Connections to the Arkansas Disciplinary Literacy Standards:

- WHST.9-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem.
- RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem.
- RST.11-12.8: Evaluate the hypotheses, data, analysis, and or conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusion with other sources of information.
- RST.11-12.9: Synthesize information from a range of sources into a coherent understanding of a process,

phenomenon or concept, resolving conflicting information when possible.

RST.9-10.8: Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem.

RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

WHST.9-12.7: Conduct short and well as more sustained research projects to answer a question or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

WHST.9-12.5: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

Connections to the Arkansas Mathematic Standards:

HSN.Q.A.3: Choose a level of accuracy appropriate to limitations on measuring when reporting.

MP.2: Reason abstractly and quantitatively.

MP.4: Model with mathematics.

HSN.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

HSN.Q.A.2: Define appropriate quantities for the purpose of descriptive modeling.

Physics:

Topic 1: Motion

P-PS1-1AR: Create a model of motion and forces, including vectors graphed on the coordinate plane, to describe and predict the behavior of a system. [Clarification Statement: Emphasis is on vector addition for 1-D (frame of reference), 2-D motion (projectile, rotational motion), vectors applied to force diagrams, and vector direction for gravitational forces.]

P1-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more

manageable problems that can be solved through engineering. [AR Clarification Statement: Problems could include acceleration factors (one-dimensional motion), vectors (two dimensional motion), and gravity (Newton's laws).]

Topic 2: Work and Energy

P-PS2-5AR: Use mathematical representations to support the claim that the change in kinetic energy of a system is equal to the net work performed upon the system. [Clarification Statement: Emphasis is on quantitative kinetic energy in interactions.]

Connections to the Arkansas Disciplinary Literacy Standards:

RST.9-10.7: Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.

RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

RST.11-12.7: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g.: quantitative data, video, multimedia) in order to address a question or solve a problem.

WHST.9-12.9: Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process phenomenon, or concept, resolving conflicting information when possible.

Connections to the Arkansas English Language Arts Standards:

SL.11-12.2: Integrate multiple sources of information that is gained by means other than reading (e.g., texts read out loud, oral presentations or charts, graphs, diagrams, speeches) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.

SL.11-12.4: present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

Connections to the Arkansas Mathematic Standards:

MP.2: Reason abstractly and

quantitatively. MP.4: Model with

mathematics.

HSN.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems;

choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

- HSN.Q.A.2: Define appropriate quantities for the purpose of descriptive modeling.
- HSN.Q.A.3: Choose a level of accuracy, appropriate to limitations on measurement when reporting quantities.
- HSN.VM.A.1: Recognize vector quantities as having both magnitude and direction; represent vector quantities by directed line segments and use appropriate symbols for vectors and their magnitudes.
- HSA.SSE.B.3: Choose and produce an equivalent form of expression to reveal and explain properties of the quantity represented by the expression.
- HSA.CED.A.3: Represent and interpret constraints by equations or inequalities, and by systems of equations and/or inequalities.
- HSA.CED.A.4: Rearrange literal equations using the properties of equality.

HSF.IF.C.7: Graph functions expressed algebraically and show key features of the graph, with and without technology; graph linear and quadratic functions and, when applicable, show intercepts, maxima, and minima; graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions; graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior; graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior; graph exponential and logarithmic functions, showing intercepts and end behavior, graph trigonometric functions, showing period, midline, and amplitude.

Lesson Performance Expectations:

- Students will understand the importance of water conservation in farming.
- Students will understand the importance of filtration of runoff before it reaches local waterways.
- Students will understand the importance of water chemistry testing of runoff.

Students will understand how water conservation though filtration of runoff impacts their lives.

Student Science Performance

Phenomenon: Conventional farm runoff has a high potential of contaminating local watersheds and waterways. New filtration techniques in farming improve runoff water quality and protect the local watersheds and waterways from contamination.

Gather:

- 1. Students break into groups to define the following word groups:
 - Watersheds
 - Aerated pastures
 - Grassed waterways
 - Farm ponds
 - Eutrophication

- Water hypoxia
- Phosphorous contamination inwater
- Nitrogen contamination inwater
- WaterQualityAnalysis; focus on nitrates, phosphates, pH, Sediments and Solids in water

Reason:

1. Students in groups will come up with two questions they have about the above word groups that may be answered in the video.

Class Discussion:

Questions to initiate Discussion:

- Q: How do farmers deal with water runoff from livestock farms?
- Q: Where does that water go?
- Q: Is this an issue in Arkansas and, if so, why?
- Q: Considering the properties of water and the interaction water has on the environment, how could this excess manure runoff affect our ecosystem?
- Q. What could farmers do to prevent this contaminated runoff from getting into our local waterways and watersheds?
- Q: How can farmers measure these excess contaminants?

Teaching Suggestion:

Do a KWL Chart about manure and runoff water. How do livestock farmers deal with runoff? How do farmers measure irrigation water to prevent waste? Get students thinking about the drawbacks of runoff by asking students how do farmers deal with

livestock manure? Where does the manure runoff go? Considering the properties of water and the interaction water has on the environment, how could this excess manure runoff impact our ecosystem? What could farmers do to prevent this water from entering our local waterways and watersheds? How can farmers measure these excess contaminants?

Tell the students that they are going to watch a video titled 'The Marley Discovery Farm in NW Arkansas: Protecting Water Resources Through Conservation on a Poultry-Beef Grazing Farm. Before they start the video, have the students break into groups to define the word groups from page six:

Once all the words are defined, have each group come up with two questions they have about the above word groups that may be answered in the video. *Their jobs are to turninthequestions and the answers by the end of the virtual field trip.**

*The live video stream will give your students an opportunity to ask questions throughout the field trip. If they are not finding their questions adequately answered during the broadcast, you can send in their questions to be answered at the end of the video.

BEFORE THE VIDEO be sure the students understand that watershed water is a precious commodity as it is what local communities use for their drinking water. This water needs to be protected and any contaminated runoff needs to be curtailed before reaching it. Local waterways also need to be protected as ultimately that water

ends up in the Gulf of Mexico, where excess nutrients lead to eutrophication and hypoxia in the gulf.

If you are in chemistry, this is a good time to discuss the water cycle, the properties of water, the structure and function of the dipole molecule and its impact on systems around it. Also discuss the chemistries of water and water testing.

Environmental Science concepts could involve ecosystem dynamics, natural resources, human impact and the role of water in surrounding systems, and water testing.

Physics teachers: This video covers the physics of flow involving volume, height, pressure flow and velocity of water. It also discusses the velocity of particulates in a water stream. Consider developing some problems beforehand for your students to work on after the video.

Communicate:

After the video, break the students into three groups; the *Aerated Pasture* Group, the *Grassed Waterways* group and the *Farm Ponds* group. Have each group brainstorm how their 'area of study' affects their daily lives. Tell students they need to come up with at least five ways and then report them to the rest of the class.

Students will turn in a two-paragraph reflection paper on what they learned and how these conservation efforts affect their personal lives and the answers to their two questions from the video.

Formative Assessment for Student Learning

Elicit Evidence of Learning:

Evidence of Student Proficiency:

Students will understand the importance of filtration of runoff with regard to conservation of water and how filtering runoff is good for local watersheds and waterways. Students will understand that these innovative techniques involve not only filtration of livestock water runoff but also checking the chemistries of this water to monitor contaminants.

Range of Typical Student Responses

Descriptors of grade-level appropriate student responses:

- **Full understanding:** Student will have all the vocabulary defined, two questions for the video and will participate fully in the post video discussion, coming up with five different ways their area of study affects their daily lives. Reflection paper will show full connection between what they experienced and understand.
- **Partial understanding:** Student will have 75% of the vocabulary defined, one question for the video and an average of three ways from the post video group. Reflection paper will only show partial connection between what they experienced and understand.
- **Limited understanding:** Student will have 50% or less of vocabulary defined, no questions for the viand show no understanding of what was learned in the post group orreflection

Acting on Evidence of Learning

This is a brief description of the instructional actions to take based on the students' performance. When the action includes extensive descriptors and/or materials you may wish use **Appendix C.**

Description of instruction action and response to support student learning.

• Action for student who displays partial or limited understanding: student willbe partnered with a student who has full understanding and material will be reviewed with mentoring from the teaching student.

Extensions of learning for student who displays full understanding:

Assign a brainstorming project that allows students to designtheir own alternate filtration method.

Science Practices:

Planning and Carrying Out Investigations

Constructing Explanations and Designing Solutions

Asking Questions and Defining Problems

Engage an Argument from Evidence

Using Mathematics and Computational Thinking

Developing and Using Models Analyzing and Interpreting Data

Science Essentials:

- Plan and conduct an investigation individually and collaboratively to produce data to serve as the
 basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to
 produce reliable measurements and consider limitations on the precision of the data and refine the
 design accordingly.
- Design a solution to a complex real-world problem, based on scientificknowledge, student-generated sources of evidence, prioritized criteria, and trade-off considerations.
- Analyzecomplexrealworld-problems by specifying criteria and constraints for successful solutions.
- Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors.
- Create a computational model or simulation of a phenomenon, designed device, process, or system.
- Use mathematical representations of phenomena to support claims.
- Use a model to predict the relationships between systems or between components of a system.

• Analyze data using tools, technologies, and/or models in order to make valid and reliable scientific claims or determine an optimal design solution. **Crosscutting Concepts**:

Structure and Function

Influence of Engineering, Technology and Science on Society and the Natural World

Science Addresses Questions About the Natural and Material World

Stability and Change Cause and Effect

Systems and System Models

Interdependence of Science and Technology

Energy and Matter

Science Essentials:

- The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials.
- New technologies can have deep impacts on society and the environment, including some that
 were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.
- Science knowledge indicates what can happen in natural systems-not what should happen. The latter involves ethics, values and human decisions about the use of knowledge.
- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.
- Empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects.
- When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
- Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise.
- The total amount of energy and matter in closed systems is preserved.

Disciplinary Core Ideas:

ESS2.C: The roles of Water in Earth's Surface Processes

ETS1.C:Optimizingthe Design Solution

ETS1.A: Defining and Delimiting Engineering Problems

ESS3.A: Natural Resources

ETS1.B: Developing Possible Solutions

ESS3.C: Human Impacts on Earth Systems

PS2.A: Forces and Motion

ETS1.C:Optimizingthe Design Solution

PS3.C: Relationship between Energy and Forces

PS3.B: Conservation of Energy and Energy Transfer

Science Essentials:

- The abundance of liquid water on Earth's surface and its unique combination of physical and chemical properties are central to the planet's dynamics. These properties include water's exceptional capacity to absorb, store and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks.
- Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others may be needed.
- Humanity faces major global challenges today, such as the need for supplies of clean water and food or for an energy source that minimizes pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities.
- Resource availability has guided the development of human society.
- Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical, and in making a persuasive presentation to a client about how a given design will fit his or her needs.
- Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation.
- Changes in the physical environment whether naturally occurring or human induced, have thus
 contributed to the expansion of some species, the emergence of new distinct species as
 populations diverge under different conditions, and the decline-and sometimes the extinction of
 some species.
- Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object.
- When two objects interacting through a force field change relative position, the energy stored

in the force field is changed.

- Mathematical expressions, which quantify how the stored energy in a system depends on its
 configuration and how kinetic energy depends on mass and speed, allow the concept
 conservation of energy to be used to predict and describe system behavior.
- Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.

Appendix A - Student Prompts

Student Prompts for the Lesson

Phenomenon: Conventional farm runoff has a high potential of contaminating local watersheds and waterways. New filtration techniques in farming improve runoff water quality and protect the local watersheds and waterways from contamination.

Group Performances:

- 1. Ask questions to plan an investigation for understanding that farm water runoff filtration can preserve local watersheds and protect local waterways by prevention of contamination.
- 2. Plan an investigation by defining the necessary words and having questions ready for the video.
- 3. Construct an explanation by forming groups and discussing how farm water filtration can affect a person's everyday life.
- 4. Use a model to explain how the filtration of farm water runoff can preserve local watersheds and protect the local ecology.

Class Discussion

Individual Performances:

5. Develop an argument for how farm water filtration can and does help our local watersheds and waterways.

Appendix B -

Materials:

- You will need to register online if you plan to watch the field trip 'live' on June
- 23. Once you have registered, you will receive a registration link via Constant Contact. If you do not have a link, email dyoung@uada.edu and one will be emailed to you.
- If you register during the live feed, you will be automatically directed to the site. You will receive an automated email with the link to the live feed and a reminder email with a link one hour before the VFT begins.
- If you plan to watch the recorded *Marley Discovery Farm in NW Arkansas:*Protecting Water Resources Through Conservation on a Poultry-Beef Grazing Farm after June 23, go to www.uaex.uada.edu/soywhatsup and click on the 'teacher curriculum' icon on the left-handside of the page. This will take you to the link for the video.
- Paper writing utensils for students.

Preparation:

It is highly recommended that you, the teacher, watch *The History of Discovery Farms* Virtual Field Trip located on the *soywhatsup* website, before watching the *Marley Discovery Farm in NW Arkansas: Protecting Water Resources Through Conservation on a Poultry-Beef Grazing Farm* Virtual Field Trip as it will give you a strong understanding about how and why Discovery Farms work in Arkansas. This will provide background when explaining the *Marley Discovery Farm* video to your students. It is also recommended you familiarize yourself with the vocabulary.

No other significant preparation is necessary.

Time Duration: two class periods

The video is about 60 minutes long (45 minutes plus any questions). Assume about 15 minutes for students to look up vocabulary and prepare questions for the video session, 15 minutes to teach essential concepts and about 15 minutes for group discussion and reflection after the video.

Appendix C -

Resources that may help:

www.uaex.uada.edu/publications/PDF/MP487.pdf

www.uaex.uada.edu/environment-nature/water/docs/ag1290.pdf

www.uaex.uada.edu/publications/PDF/FSPPC107.pdf

www.uaex.uada.edu/publications/pdf/FSA-9359.pdf

https://extension.msstate.edu/sites/default/files/publications/publications/p26 57.pdf