DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System

IPM considerations for organic fruit production: managing insect pests

Donn Johnson and Soo-Hoon Sam Kim

Fruit / Nut Pest Management

Cooperative Extension Service

Agricultural Experiment Station

Search Publications Jobs Personnel Directory Links

Home			
Fruit Blogs	Pest Alert:		
PM Product Suppliers	Spotted Wing Drosophila in Arkansas		
Degree days	Stink Bugs and Pecan Weevils Damaging Nuts		
Fruit Newsletter	winn Bugs and recur recerns Bunnaging Hats		
Pecan	Arkansas Pest Management News- click here		
Viticulture			
Organic	New Fact sheets:		
Articles / Talks	Brown Marmorated Stink Bug		
Spray Guides	Spotted Wing Drosophila		
Efficacy Tables	Raspberry Crown Borer		

Link: http://comp.uark.edu/~dtjohnso/

- Organic tactics against:
 - Codling moth or Oriental fruit moth
 - San Jose scale
 - Plum curculio
 - Japanese beetle
 - Grape root borer
- Screen exclusion
- Summary

Integrated Pest Management (IPM)

- USDA IPM Roadmap (2003) definition of IPM:
 - Science-based, decision-making process that identifies and reduces risks from pests and pest management related strategies.
 - It coordinates pest biology, environmental information and available technology to prevent unacceptable levels of pest damage by the most economical means, while posing the least possible risk to people, property, resources, and the environment.

Organic Apple Project

09/2008 - 08/2013 **Best management practices for organic orchard nutrition**. USDA-CSREES Integrated Organic Program (IOP). Co-PI: Rom, Garcia, Johnson, Popp, Savin.

Objectives:

Evaluate <u>effects of ground cover</u> and nutrient management practices on soil chemical, physical and biological characteristics, plant health

- Evaluate <u>organic pest management</u> practices
- <u>Apprenticeship</u> program mentored by a local grower
- Develop <u>economic production and marketing budgets</u>
- Develop <u>organic apple teaching module</u>

Organic Orchard Management

Developing Best Practices for Ground Cover, Nutrition and Pest Management in the South

'Enterprise'

Pest Management

Surround white wash

USION OF AGRICULTURE SEARCH & EXTENSION University of Arkansas System

Isomate CM/OFM TT dispensers used between early and late season sprays of Entrust, Cyd-X, Bt

Benzaldehyde + plum essence baited PC pyramid traps set around perimeter

Organic Apple PM Program

PC per trap (abandoned)

-PC per trap (conv.)

-PC per trap (Org. N)

% damage or eggs or tunnels / larvae

Organic Apple PM Program

(overwintered density was low due to similar program in previous years)

Fayetteville 2012

Apple Pest/Disease Damage in Organic 'Enterprise' Apples

Year	% PC	% CM/OFM	% SJS	22
2008	3.7	1.1	1.5	
2009	23.3	7.1	25	AN
2010	25.8	0.2	23.3	
2011	41.0	0	0	
2012	38.7	0	9.5	

- Damage by CM and OFM prevented by Entrust, Cyd-X, Bt and Isomate CM/OFM ties
- Damage by SJS prevented by 4 JMS Stylet Oil sprays in 2011
- Damage by plum curculio <u>reduced</u> by Surround whitewash compared to 100% damage in untreated orchards

Can Japanese Fruit Bag Prevent Damage?

Undergraduate, Spencer Fiser, determined effect of date of fruit bag placement on percent fruit damage

- 25 fruit bag wrapped over fruit on several dates
- Aug. 28, assessed fruit damage at harvest

Placement of Fruit Bag

Source of Japanese Fruit Bags: Wilson Irrigation & Orchard Supplies, 1902 S. 11th St., Union Gap, WA 98903; (800) 232-1174 (\$0.14 ea. Or \$140/1000 bags)

First, expand the sack. Next, the young fruit is positioned by slipping the stem into the center slot of the open sack.

Use the wire embedded in the right side like a twist tie to wrap up and over the bunched left top until clasped securely. Try to keep the sack "inflated".

Gather the left side of the open bag top and lay it over the embedded wire on the right side as you prepare to wrap and twist as shown in step 3.

Gently tap the bottom of the expanded sack to appear dented or concave, this preserves the ballooned shape.

DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System

Surround Prevents Japanese Beetle Damage

Grape Root Borer

GRB pheromone trap to monitor flight or mass trap males

GRB male (female lays eggs on leaves & larva enters soil to tunnel in roots)

GRB larva tunneling in grape root

- Larva tunnels in grape & muscadine roots = slowly causes vine decline and death
- Apply soil application of Lorsban in mid-June to prevent larval entry to roots (35 day PHI)
- Mating disruption using Isonet-Z pheromone ties
- Mass trap GRB males in sex pheromone baited green bucket traps at density of 1 trap per acre

Mating Disruption

DIVISION OF AGRICULTURE

University of Arkansas System

& EXTENSION

Muscadine vine *without* a twist-tie (°) Muscadine vine *with* a twist-tie (•)

Baited monitoring wing trap =

15-km 20-km 13-ki 13-ki 10-kig 20-kig Somple data

Results: Isonet-Z ties reduced trap catch to zero which implies no mating

Roubos, Nyoike, Stelinski, and Liburd (2011)

Mass Trapped GRB (2007-2009)

Result: mass trapping reduced larvae in roots (2009)

Future: exclude insects in high tunnel evaluating ProtekNet screen

Placement of ProtekNet screening

Very little difference in temperature in high tunnel with screen vs. no screen (Fayetteville, AR 2012)

Summary

- Japanese fruit bags prevented disease and insect damage
- 4 weekly sprays of JMS Stylet oil prevented SJS spots
- Mating disruption in combination with Entrust, Bt and/or codling moth virus (Cyd-X) prevented wormy fruit
- Japanese fruit bags produce 98% clean fruit
- Surround whitewash did not reduce damage by plum curculio but prevented Japanese beetle damage
- Mass trapping (1 trap/acre) and mating disruption both reduced grape root borer larval counts and mating
- ProtekNet screen on high tunnel may exclude many pests

Acknowledgements

- Funding sources and/or suppliers:
 - USDA-Integrated Organic Program: Best Management Practices for Organic Orchard Nutrition
- Materials / Sources:
 - Certis USA / Cyd-X (virus), Deliver (Bt)
 - Dow / Entrust (spinosad)
 - Engelhard Corporation / Surround CERTIS USA
- Assistants:
 - Barb Lewis, Sam Kim, Brian Cowell, Kevin Durden, Clint Trammel

